Geometrical Complexity of Data Approximators

نویسندگان

  • Eugenij Moiseevich Mirkes
  • Andrei Yu. Zinovyev
  • Alexander N. Gorban
چکیده

There are many methods developed to approximate a cloud of vectors embedded in high-dimensional space by simpler objects: starting from principal points and linear manifolds to self-organizing maps, neural gas, elastic maps, various types of principal curves and principal trees, and so on. For each type of approximators the measure of the approximator complexity was developed too. These measures are necessary to find the balance between accuracy and complexity and to define the optimal approximations of a given type. We propose a measure of complexity (geometrical complexity) which is applicable to approximators of several types and which allows comparing data approximations of different types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometrical Initialization, Parametrization and Control of Multilayer Perceptrons : Application to Function Approximation 1

| This paper proposes a new method to reduce training time for neural nets used as function approximators. This method relies on a geometrical control of Multilayer Perceptrons (MLP). A geometrical initializa-tion gives rst better starting points for the learning process. A geometrical parametriza-tion achieves then a more stable convergence. During the learning process, a dynamic geometrical c...

متن کامل

Geometrical Initialization, Parametrization and Control of Multilayer Perceptrons: Application to Function Approximation

This paper proposes a new method to reduce training time for neural nets used as function approximators. This method relies on a geometrical control of Multilayer Perceptrons (MLP). A geometrical initialization gives first better starting points for the learning process. A geometrical parametrization achieves then a more stable convergence. During the learning process, a dynamic geometrical con...

متن کامل

A Solution of the P versus NP Problem

Berg and Ulfberg and Amano and Maruoka have used CNF-DNF-approximators to prove exponential lower bounds for the monotone network complexity of the clique function and of Andreev's function. We show that these approximators can be used to prove the same lower bound for their non-monotone network complexity. This implies P not equal NP.

متن کامل

On DNF Approximators for Monotone Boolean Functions

We study the complexity of approximating monotone Boolean functions with disjunctive normal form (DNF) formulas, exploring two main directions. First, we construct DNF approximators for arbitrary monotone functions achieving one-sided error: we show that every monotone f can be ε-approximated by a DNF g of size 2n−Ωε( √ n) satisfying g(x) ≤ f(x) for all x ∈ {0, 1}. This is the first non-trivial...

متن کامل

Intersplines: A New Approach to Globally Optimal Multivariate Splines Using Interval Analysis

In science and engineering there often is a need for the approximation of scattered multi-dimensional data. A class of powerful scattered data approximators are the multivariate simplex B-splines. Multivariate simplex B-splines consist of Bernstein basis polynomials that are defined on a geometrical structure called a triangulation. Multivariate simplex B-splines have a number of advantages ove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013